👨‍💻 Developer Platform

Build the Future with AI Smart Glasses

Unleash your creativity with VisionTech AI's comprehensive development platform. Access powerful SDKs, APIs, and tools to create revolutionary smart glasses applications that blend AI, computer vision, and augmented reality.

Comprehensive SDKs
AI Vision APIs
AR Framework
Rich Documentation
smart_glasses_app.py
import visiontech_ai as vt

# Initialize Smart Glasses SDK
glasses = vt.SmartGlasses()

# Enable AI vision processing
vision = glasses.vision.enable_ai_detection()

# Create AR overlay
overlay = glasses.ar.create_overlay()

# Real-time object detection
@glasses.on_frame
def process_frame(frame):
    objects = vision.detect_objects(frame)
    overlay.render_annotations(objects)
    return overlay.composite(frame)

# Start the application
glasses.run()
Explore our platform

Comprehensive Development Platform

Everything you need to build next-generation smart glasses applications

Computer Vision API

Advanced computer vision capabilities including object detection, scene understanding, and real-time image processing.

/api/v1/vision/detect /api/v1/vision/classify /api/v1/vision/track

AR Framework

Comprehensive augmented reality framework for creating immersive 3D experiences and spatial computing applications.

3D Rendering Spatial Mapping Gesture Recognition

AI Processing Engine

High-performance AI processing engine optimized for edge computing with neural network acceleration and real-time inference.

1ms Latency
120fps Processing

Security & Privacy

Enterprise-grade security framework with end-to-end encryption, secure enclaves, and privacy-preserving AI processing.

E2E Encryption Secure Enclaves Privacy-first AI

Developer Tools

Complete suite of development tools including simulators, debuggers, performance profilers, and deployment utilities.

AR Simulator Performance Profiler Debug Console

Code Examples

Get started quickly with practical examples and tutorials

Real-time Object Detection

Implement real-time object detection with AI-powered computer vision

object_detection.py
import visiontech_ai as vt
import numpy as np

# Initialize the Smart Glasses SDK
glasses = vt.SmartGlasses()
vision = glasses.vision

# Configure object detection model
detector = vision.ObjectDetector(
    model='yolo-v8-optimized',
    confidence_threshold=0.7,
    nms_threshold=0.4
)

# Real-time detection callback
@glasses.on_frame
def detect_objects(frame):
    # Run AI inference
    detections = detector.detect(frame)
    
    # Filter and process results
    for detection in detections:
        if detection.confidence > 0.8:
            # Draw bounding box
            glasses.ar.draw_bbox(
                detection.bbox,
                label=detection.class_name,
                confidence=detection.confidence
            )
            
            # Trigger haptic feedback for important objects
            if detection.class_name in ['person', 'vehicle']:
                glasses.haptic.pulse(intensity=0.5)
    
    return frame

# Start processing
glasses.start_camera()
glasses.run()

AR Information Overlay

Create contextual AR overlays with 3D graphics and animations

ar_overlay.py
import visiontech_ai as vt
from visiontech_ai.ar import Scene3D, Text3D, Model3D

# Initialize AR system
glasses = vt.SmartGlasses()
ar = glasses.ar

# Create 3D scene
scene = Scene3D()

# Add contextual information overlay
info_panel = ar.InfoPanel(
    position=(0, 0, -2),  # 2 meters in front
    size=(0.5, 0.3),
    background_color=(0, 0, 0, 0.8)
)

# Add dynamic text
status_text = Text3D(
    text="Smart Glasses Active",
    font_size=0.05,
    color=(0, 1, 1, 1),  # Cyan
    position=(0, 0.1, -1.5)
)

# Add 3D model for navigation
arrow = Model3D(
    model_path="assets/arrow.obj",
    position=(0, -0.1, -1.5),
    scale=(0.1, 0.1, 0.1)
)

# Animation for attention
@ar.animate(duration=2.0, loop=True)
def pulse_arrow():
    arrow.scale = (0.1, 0.1, 0.1)
    yield ar.tween_to(arrow, scale=(0.15, 0.15, 0.15), duration=1.0)
    yield ar.tween_to(arrow, scale=(0.1, 0.1, 0.1), duration=1.0)

# Add elements to scene
scene.add(info_panel)
scene.add(status_text)
scene.add(arrow)

# Render scene
ar.render_scene(scene)
glasses.run()

Voice Command Integration

Implement natural language processing for voice-controlled interactions

voice_commands.py
import visiontech_ai as vt
from visiontech_ai.nlp import VoiceProcessor

# Initialize voice processing
glasses = vt.SmartGlasses()
voice = VoiceProcessor(
    language='en-US',
    wake_word='hey_vision',
    continuous_listening=True
)

# Define command handlers
@voice.command("take a photo")
def take_photo():
    photo = glasses.camera.capture()
    glasses.storage.save(photo, "photos/")
    glasses.audio.play_sound("camera_click.wav")
    glasses.display.show_notification("Photo saved!")

@voice.command("start recording")
def start_recording():
    glasses.camera.start_video_recording()
    glasses.display.show_indicator("REC", color="red")

@voice.command("stop recording")
def stop_recording():
    video = glasses.camera.stop_video_recording()
    glasses.storage.save(video, "videos/")
    glasses.display.hide_indicator()

@voice.command("translate {text} to {language}")
def translate_text(text, language):
    translation = glasses.ai.translate(text, target_language=language)
    glasses.ar.display_text(
        translation,
        position=(0, 0, -1),
        duration=5.0
    )

@voice.command("what do you see")
def describe_scene():
    frame = glasses.camera.get_current_frame()
    description = glasses.ai.describe_scene(frame)
    glasses.audio.speak(description)

# Start voice processing
voice.start_listening()
glasses.run()

Gesture Recognition

Implement intuitive hand gesture controls for seamless interaction

gesture_control.py
import visiontech_ai as vt
from visiontech_ai.gestures import HandTracker, GestureRecognizer

# Initialize gesture recognition
glasses = vt.SmartGlasses()
hand_tracker = HandTracker()
gesture_recognizer = GestureRecognizer()

# Define gesture handlers
@gesture_recognizer.on_gesture("thumbs_up")
def thumbs_up_handler():
    glasses.audio.play_sound("success.wav")
    glasses.ar.show_emoji("👍", duration=2.0)

@gesture_recognizer.on_gesture("peace_sign")
def peace_sign_handler():
    glasses.camera.capture_selfie()
    glasses.ar.show_emoji("✌️", duration=1.5)

@gesture_recognizer.on_gesture("point")
def point_handler(direction):
    # Get pointing direction
    target = glasses.ar.raycast(direction)
    if target:
        # Highlight pointed object
        glasses.ar.highlight_object(target, color="yellow")
        
        # Get object information
        info = glasses.ai.identify_object(target)
        glasses.ar.display_info_popup(info, position=target.position)

@gesture_recognizer.on_gesture("swipe_left")
def swipe_left_handler():
    glasses.ui.navigate_previous()

@gesture_recognizer.on_gesture("swipe_right")
def swipe_right_handler():
    glasses.ui.navigate_next()

@gesture_recognizer.on_gesture("pinch_zoom")
def pinch_zoom_handler(scale_factor):
    glasses.ar.zoom_view(scale_factor)

# Process hand tracking
@glasses.on_frame
def process_gestures(frame):
    # Track hand landmarks
    hands = hand_tracker.detect_hands(frame)
    
    for hand in hands:
        # Recognize gestures
        gesture = gesture_recognizer.recognize(hand)
        
        if gesture:
            # Trigger gesture handler
            gesture_recognizer.handle_gesture(gesture)
            
            # Visual feedback
            glasses.ar.draw_hand_skeleton(hand)
    
    return frame

# Start gesture recognition
glasses.run()

3D Spatial Mapping

Create detailed 3D maps of environments for precise AR object placement

spatial_mapping.py
import visiontech_ai as vt
from visiontech_ai.spatial import SpatialMapper, MeshGenerator

# Initialize spatial mapping system
glasses = vt.SmartGlasses()
spatial_mapper = SpatialMapper(
    resolution=0.01,  # 1cm resolution
    max_range=10.0,   # 10 meter range
    update_frequency=30  # 30Hz updates
)

# Configure mesh generation
mesh_generator = MeshGenerator(
    smoothing_factor=0.8,
    decimation_ratio=0.3,
    normal_estimation=True
)

# Real-time mapping callback
@glasses.on_depth_frame
def update_spatial_map(depth_frame, rgb_frame):
    # Process depth data
    point_cloud = spatial_mapper.process_depth(depth_frame)
    
    # Update 3D mesh
    mesh = mesh_generator.update_mesh(point_cloud)
    
    # Detect surfaces and planes
    surfaces = spatial_mapper.detect_surfaces(mesh)
    
    # Visualize mapping progress
    glasses.ar.render_mesh(mesh, wireframe=True)
    glasses.ar.highlight_surfaces(surfaces)
    
    return mesh

# Place AR objects on detected surfaces
@spatial_mapper.on_surface_detected
def place_ar_content(surface):
    if surface.type == 'horizontal' and surface.area > 0.5:
        # Place virtual furniture on tables/floors
        furniture = glasses.ar.load_model('chair.obj')
        glasses.ar.place_object(
            furniture,
            position=surface.center,
            orientation=surface.normal
        )
    
    elif surface.type == 'vertical' and surface.area > 1.0:
        # Place UI panels on walls
        ui_panel = glasses.ar.create_ui_panel(
            size=(0.4, 0.3),
            content='Welcome to AR Space'
        )
        glasses.ar.attach_to_surface(ui_panel, surface)

# Export spatial map
def export_map():
    mesh = spatial_mapper.get_current_mesh()
    glasses.storage.save_mesh(mesh, 'spatial_maps/room_scan.ply')
    
    # Generate occlusion map for realistic AR
    occlusion_map = spatial_mapper.generate_occlusion_map()
    glasses.ar.set_occlusion_map(occlusion_map)

# Start spatial mapping
spatial_mapper.start_mapping()
glasses.run()

API Documentation

Comprehensive API reference for all VisionTech AI services

POST /api/v1/vision/detect

Object Detection

Detect and classify objects in real-time from camera feed or uploaded images.

Request Body
{
  "image": "base64_encoded_image",
  "model": "yolo-v8-optimized",
  "confidence_threshold": 0.7,
  "max_detections": 10,
  "classes": ["person", "vehicle", "object"]
}
Response
{
  "detections": [
    {
      "class_name": "person",
      "confidence": 0.95,
      "bbox": [100, 150, 200, 300],
      "center": [150, 225]
    }
  ],
  "processing_time_ms": 12,
  "model_version": "v2.1.0"
}
GET /api/v1/ar/scene

AR Scene Management

Retrieve current AR scene state and 3D object positions.

POST /api/v1/nlp/process

Natural Language Processing

Process voice commands and natural language queries with context awareness.

Developer Community

Join thousands of developers building the future of smart glasses

0
Active Developers
0
Published Apps
0
Open Source Projects
0
Countries

Developer Forum

Connect with fellow developers, share ideas, get help, and collaborate on innovative smart glasses projects.

24/7 Support

Get expert technical support from our developer relations team and community moderators around the clock.

Showcase Gallery

Feature your innovative applications in our developer showcase and get recognition from the community.

Learning Resources

Access comprehensive tutorials, video courses, and documentation to master smart glasses development.

Get Started in Minutes

Follow our quick start guide to build your first smart glasses application

1

Create Developer Account

Sign up for a free developer account and get instant access to our SDK, APIs, and development tools.

2

Download SDK

Install the VisionTech AI SDK for your preferred programming language and development environment.

pip install visiontech-ai-sdk
3

Get API Key

Generate your API key from the developer dashboard to authenticate your applications.

4

Build Your First App

Follow our quick start tutorial to create a simple object detection application in under 10 minutes.

Ready to Build the Future?

Join the VisionTech AI developer ecosystem and create revolutionary smart glasses applications that will change how people interact with the world.

Free developer account
Comprehensive documentation
24/7 developer support
Active community