Unleash your creativity with VisionTech AI's comprehensive development platform. Access powerful SDKs, APIs, and tools to create revolutionary smart glasses applications that blend AI, computer vision, and augmented reality.
import visiontech_ai as vt
# Initialize Smart Glasses SDK
glasses = vt.SmartGlasses()
# Enable AI vision processing
vision = glasses.vision.enable_ai_detection()
# Create AR overlay
overlay = glasses.ar.create_overlay()
# Real-time object detection
@glasses.on_frame
def process_frame(frame):
objects = vision.detect_objects(frame)
overlay.render_annotations(objects)
return overlay.composite(frame)
# Start the application
glasses.run()
Everything you need to build next-generation smart glasses applications
Complete development kit for building AI-powered smart glasses applications with computer vision, AR rendering, and edge AI processing.
Advanced computer vision capabilities including object detection, scene understanding, and real-time image processing.
/api/v1/vision/detect
/api/v1/vision/classify
/api/v1/vision/track
Comprehensive augmented reality framework for creating immersive 3D experiences and spatial computing applications.
High-performance AI processing engine optimized for edge computing with neural network acceleration and real-time inference.
Enterprise-grade security framework with end-to-end encryption, secure enclaves, and privacy-preserving AI processing.
Complete suite of development tools including simulators, debuggers, performance profilers, and deployment utilities.
Get started quickly with practical examples and tutorials
Implement real-time object detection with AI-powered computer vision
import visiontech_ai as vt
import numpy as np
# Initialize the Smart Glasses SDK
glasses = vt.SmartGlasses()
vision = glasses.vision
# Configure object detection model
detector = vision.ObjectDetector(
model='yolo-v8-optimized',
confidence_threshold=0.7,
nms_threshold=0.4
)
# Real-time detection callback
@glasses.on_frame
def detect_objects(frame):
# Run AI inference
detections = detector.detect(frame)
# Filter and process results
for detection in detections:
if detection.confidence > 0.8:
# Draw bounding box
glasses.ar.draw_bbox(
detection.bbox,
label=detection.class_name,
confidence=detection.confidence
)
# Trigger haptic feedback for important objects
if detection.class_name in ['person', 'vehicle']:
glasses.haptic.pulse(intensity=0.5)
return frame
# Start processing
glasses.start_camera()
glasses.run()
Create contextual AR overlays with 3D graphics and animations
import visiontech_ai as vt
from visiontech_ai.ar import Scene3D, Text3D, Model3D
# Initialize AR system
glasses = vt.SmartGlasses()
ar = glasses.ar
# Create 3D scene
scene = Scene3D()
# Add contextual information overlay
info_panel = ar.InfoPanel(
position=(0, 0, -2), # 2 meters in front
size=(0.5, 0.3),
background_color=(0, 0, 0, 0.8)
)
# Add dynamic text
status_text = Text3D(
text="Smart Glasses Active",
font_size=0.05,
color=(0, 1, 1, 1), # Cyan
position=(0, 0.1, -1.5)
)
# Add 3D model for navigation
arrow = Model3D(
model_path="assets/arrow.obj",
position=(0, -0.1, -1.5),
scale=(0.1, 0.1, 0.1)
)
# Animation for attention
@ar.animate(duration=2.0, loop=True)
def pulse_arrow():
arrow.scale = (0.1, 0.1, 0.1)
yield ar.tween_to(arrow, scale=(0.15, 0.15, 0.15), duration=1.0)
yield ar.tween_to(arrow, scale=(0.1, 0.1, 0.1), duration=1.0)
# Add elements to scene
scene.add(info_panel)
scene.add(status_text)
scene.add(arrow)
# Render scene
ar.render_scene(scene)
glasses.run()
Implement natural language processing for voice-controlled interactions
import visiontech_ai as vt
from visiontech_ai.nlp import VoiceProcessor
# Initialize voice processing
glasses = vt.SmartGlasses()
voice = VoiceProcessor(
language='en-US',
wake_word='hey_vision',
continuous_listening=True
)
# Define command handlers
@voice.command("take a photo")
def take_photo():
photo = glasses.camera.capture()
glasses.storage.save(photo, "photos/")
glasses.audio.play_sound("camera_click.wav")
glasses.display.show_notification("Photo saved!")
@voice.command("start recording")
def start_recording():
glasses.camera.start_video_recording()
glasses.display.show_indicator("REC", color="red")
@voice.command("stop recording")
def stop_recording():
video = glasses.camera.stop_video_recording()
glasses.storage.save(video, "videos/")
glasses.display.hide_indicator()
@voice.command("translate {text} to {language}")
def translate_text(text, language):
translation = glasses.ai.translate(text, target_language=language)
glasses.ar.display_text(
translation,
position=(0, 0, -1),
duration=5.0
)
@voice.command("what do you see")
def describe_scene():
frame = glasses.camera.get_current_frame()
description = glasses.ai.describe_scene(frame)
glasses.audio.speak(description)
# Start voice processing
voice.start_listening()
glasses.run()
Implement intuitive hand gesture controls for seamless interaction
import visiontech_ai as vt
from visiontech_ai.gestures import HandTracker, GestureRecognizer
# Initialize gesture recognition
glasses = vt.SmartGlasses()
hand_tracker = HandTracker()
gesture_recognizer = GestureRecognizer()
# Define gesture handlers
@gesture_recognizer.on_gesture("thumbs_up")
def thumbs_up_handler():
glasses.audio.play_sound("success.wav")
glasses.ar.show_emoji("👍", duration=2.0)
@gesture_recognizer.on_gesture("peace_sign")
def peace_sign_handler():
glasses.camera.capture_selfie()
glasses.ar.show_emoji("✌️", duration=1.5)
@gesture_recognizer.on_gesture("point")
def point_handler(direction):
# Get pointing direction
target = glasses.ar.raycast(direction)
if target:
# Highlight pointed object
glasses.ar.highlight_object(target, color="yellow")
# Get object information
info = glasses.ai.identify_object(target)
glasses.ar.display_info_popup(info, position=target.position)
@gesture_recognizer.on_gesture("swipe_left")
def swipe_left_handler():
glasses.ui.navigate_previous()
@gesture_recognizer.on_gesture("swipe_right")
def swipe_right_handler():
glasses.ui.navigate_next()
@gesture_recognizer.on_gesture("pinch_zoom")
def pinch_zoom_handler(scale_factor):
glasses.ar.zoom_view(scale_factor)
# Process hand tracking
@glasses.on_frame
def process_gestures(frame):
# Track hand landmarks
hands = hand_tracker.detect_hands(frame)
for hand in hands:
# Recognize gestures
gesture = gesture_recognizer.recognize(hand)
if gesture:
# Trigger gesture handler
gesture_recognizer.handle_gesture(gesture)
# Visual feedback
glasses.ar.draw_hand_skeleton(hand)
return frame
# Start gesture recognition
glasses.run()
Create detailed 3D maps of environments for precise AR object placement
import visiontech_ai as vt
from visiontech_ai.spatial import SpatialMapper, MeshGenerator
# Initialize spatial mapping system
glasses = vt.SmartGlasses()
spatial_mapper = SpatialMapper(
resolution=0.01, # 1cm resolution
max_range=10.0, # 10 meter range
update_frequency=30 # 30Hz updates
)
# Configure mesh generation
mesh_generator = MeshGenerator(
smoothing_factor=0.8,
decimation_ratio=0.3,
normal_estimation=True
)
# Real-time mapping callback
@glasses.on_depth_frame
def update_spatial_map(depth_frame, rgb_frame):
# Process depth data
point_cloud = spatial_mapper.process_depth(depth_frame)
# Update 3D mesh
mesh = mesh_generator.update_mesh(point_cloud)
# Detect surfaces and planes
surfaces = spatial_mapper.detect_surfaces(mesh)
# Visualize mapping progress
glasses.ar.render_mesh(mesh, wireframe=True)
glasses.ar.highlight_surfaces(surfaces)
return mesh
# Place AR objects on detected surfaces
@spatial_mapper.on_surface_detected
def place_ar_content(surface):
if surface.type == 'horizontal' and surface.area > 0.5:
# Place virtual furniture on tables/floors
furniture = glasses.ar.load_model('chair.obj')
glasses.ar.place_object(
furniture,
position=surface.center,
orientation=surface.normal
)
elif surface.type == 'vertical' and surface.area > 1.0:
# Place UI panels on walls
ui_panel = glasses.ar.create_ui_panel(
size=(0.4, 0.3),
content='Welcome to AR Space'
)
glasses.ar.attach_to_surface(ui_panel, surface)
# Export spatial map
def export_map():
mesh = spatial_mapper.get_current_mesh()
glasses.storage.save_mesh(mesh, 'spatial_maps/room_scan.ply')
# Generate occlusion map for realistic AR
occlusion_map = spatial_mapper.generate_occlusion_map()
glasses.ar.set_occlusion_map(occlusion_map)
# Start spatial mapping
spatial_mapper.start_mapping()
glasses.run()
Comprehensive API reference for all VisionTech AI services
Detect and classify objects in real-time from camera feed or uploaded images.
{
"image": "base64_encoded_image",
"model": "yolo-v8-optimized",
"confidence_threshold": 0.7,
"max_detections": 10,
"classes": ["person", "vehicle", "object"]
}
{
"detections": [
{
"class_name": "person",
"confidence": 0.95,
"bbox": [100, 150, 200, 300],
"center": [150, 225]
}
],
"processing_time_ms": 12,
"model_version": "v2.1.0"
}
Retrieve current AR scene state and 3D object positions.
Process voice commands and natural language queries with context awareness.
Join thousands of developers building the future of smart glasses
Connect with fellow developers, share ideas, get help, and collaborate on innovative smart glasses projects.
Get expert technical support from our developer relations team and community moderators around the clock.
Feature your innovative applications in our developer showcase and get recognition from the community.
Access comprehensive tutorials, video courses, and documentation to master smart glasses development.
Follow our quick start guide to build your first smart glasses application
Sign up for a free developer account and get instant access to our SDK, APIs, and development tools.
Install the VisionTech AI SDK for your preferred programming language and development environment.
pip install visiontech-ai-sdk
Generate your API key from the developer dashboard to authenticate your applications.
Follow our quick start tutorial to create a simple object detection application in under 10 minutes.
Join the VisionTech AI developer ecosystem and create revolutionary smart glasses applications that will change how people interact with the world.